search

Search form

About the Center for Metabolic Biology

The Center for Metabolic Biology (CMB) facilitates, encourages, and sponsors innovative and fundamental molecular research that will lead to a comprehensive understanding of metabolic networks and systems. The goal of the Center is to generate the fundamental understanding of metabolism that will provide the basis for designing novel biological pathways for biochemical constituents that improve the nutritional quality of agricultural products and generate novel biorenewable sources of industrial feedstocks. Read more about

Category: 

Projects

NSF Engineering Center for Biorenewable Chemicals (CBiRC)

The Center for Biorenewable Chemicals (CBiRC) is developing the tools, components and materials needed to transform biological-based systems to generate chemicals. The Center is developing generalized platforms for transforming plant derived carbohydrate feedstocks into chemicals that integrate both biocatalytic systems and chemical catalysts.  See project website. Read more about NSF Engineering Center for Biorenewable Chemicals (CBiRC)

Project Type: 

Mass Spectrometric Imaging of Plant Metabolites

In this project, we are developing mass spectrometric imaging techniques to map metabolite distributions within plant tissues, and eventually among individual plant cells. The project build on our past advances to 1) enhance mass spectrometric imaging (MSI) for determining the distribution of metabolites at very high spatial resolution within plant tissues and cells; and 2) apply these techniques to understand the organization of complex metabolic processes at the levels of single cells and subcellular compartments. Read more about Mass Spectrometric Imaging of Plant Metabolites

Project Type: 

Integrated and Dynamic Multi-Spectroscopic in situ Imaging of Plant Metabolism at the Level of Subcellular Compartments

This multi-disciplinary team will develop new integrated novel multi-spectral imaging technologies that will assess and quantitatively model metabolic processes that are asymmetrically distributed at the cellular and subcellular levels of plant organs.  The imaging technology development will be in the context of computational capabilities that will integrate multi-spectral images with genome scale modeling and thus contribute to the better understanding how biomass-based biofuel producing metabolic pathways are interconnected and controlled within topological constraints in spatially defined subcellular regions within plant cells. Read more about Integrated and Dynamic Multi-Spectroscopic in situ Imaging of Plant Metabolism at the Level of Subcellular Compartments

Project Type: 

Comparative Functional Genomics of Nectaries and Nectar in the Dicots

Nectar and nectary metabolomes will be analyzed using methods optimized for the preliminary data. These methods are based on procedures used to determine the metabolomes of several plant organs, including Arabidopsis seedling leaves, soybean seeds, maize leaves, and Jacaranda nectar. Read more about Comparative Functional Genomics of Nectaries and Nectar in the Dicots

Project Type: 

Regulation of Seed Composition

The objectives of this project are to use systems biology approach to study regulation of seed composition, to develop a molecular tool for soybean germplasm improvement. This molecular tool can generally increase plant defense to pathogens/pests, with higher-protein trait, with normal morphology, development and yield similar to the control plants. A non-transgenic approach has been set up to generate non-regulatory soybean with potentially both high-protein and pathogen/pest-resistance traits. Read more about Regulation of Seed Composition

Project Type: 

Isolation and Evaluation of Phytochemicals from Mushrooms for the Inhibition of HMG-CoA Reductase

The objectives of this project are determination of the antioxidant activity of selected mushrooms, evaluation of the inhibitory effect of different extracts of mushrooms on HMG-CoA reductase activity, isolation of bioactive phytochemicals for HMG-CoA reductase inhibition, and structure elucidation of compounds that inhibit HMG-CoA reductase by using NMR. Read more about Isolation and Evaluation of Phytochemicals from Mushrooms for the Inhibition of HMG-CoA Reductase

Project Type: 

BIC: An Innovation Partnership to Advance a High-Throughput Phenotype Screening Platform

Great strides have been made in the plant sciences through high-throughput DNA sequencing and analysis of plant genomes. The challenge now is to develop analogous high-throughput technologies to analyze a plant’s biochemical phenotype (phenome), which is the key to utilizing genomics to improve and develop new cultivars. Read more about BIC: An Innovation Partnership to Advance a High-Throughput Phenotype Screening Platform

Project Type: 

Highlights